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ABSTRACT

Optimum STAP requires knowledge of the true interference covariance matrix. In practice,
this matrix is not known and must be estimated from training data, which must be target free
and statistically homogeneous with respect to the range gate under test. These conditions are
often not satisfied, which degrades the detection performance. Particularly for bistatic ground
moving target indication (GMTI) radar, the clutter Doppler frequency depends on range for all
array geometries. This range dependency leads to problems in clutter suppression through STAP
techniques. In this paper, we study issues associated with applying two novel STAP techniques,
which minimize the amount of navigation data associated with both the transmitter and receiver.
Performance results against existing techniques are given in terms of improvement factor loss
plots and receiver operating curves.

1 Introduction

Space-time adaptive processing (STAP) is a well-established technique for detection of moving
targets by an airborne radar. Interest in bistatic STAP, where the transmitter and receiver
are separated, has picked up in recent years. Bistatic radar offers several advantages over its
monostatic counterpart, such as the higher possibility of detecting stealth targets. Training and
updating of the clutter covariance matrix is a key step in the implementation and effectiveness
of any STAP system. In a bistatic or multi-static environment, the usual impediment and
possible clutter in-homogeneity experienced in the linear monostatic side-looking case is further
complicated by the range-dependent nature of the clutter ridge in the angle-Doppler plane
induced by the physical geometry of the two (or more) aircraft [1]. Variations in the clutter
covariance matrix with range in the bistatic case are thus due to a combination of these two
factors, that is: (i) in-homogeneity of ground scatterers; (ii) the physical geometry of the aircraft.
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Thus the bistatic range-dependent clutter spectrum complicates the clutter suppression problem
and leads to significant degradation in performance. A mismatch in the clutter statistics between
the training range cells and the test range cell will result in the widening of the STAP filter
clutter notch. This will cause target returns from relatively slow-velocity or low-flying targets
to be suppressed or even go undetected.

A number of compensation approaches exist to mitigate the impact of this range dependency
on clutter suppression, such as Doppler compensation in the angle-Doppler domain [2] and
angle-Doppler compensation [3]. However, these techniques effectively only manage to map the
mainlobe clutter peak from one range gate to another and they take little account of sidelobe
clutter. Other techniques have been proposed that attempt to map the sidelobe clutter, like
angle and separate Doppler compensation [4], registration-based methods [5] and estimation of
clutter covariance by configuration system parameter estimation [6].

The major draw-back with these techniques is that they require knowledge of the radar system
navigational data, which has to be constantly updated adaptively. Although the data can
be estimated, like in [6] and [7], an initial estimate or knowledge of the theoretical direction-
Doppler curves are required respectively. A new technique was proposed in [8] to predict the
range-dependent inverse covariance matrix using least squares estimation. No navigational data
or parameters estimation has to be performed as only the clutter data is required. Moreover,
the technique is not restricted to uniform linear array (ULA) applications.

Conventional STAP techniques rely on the availability of target-free training data, which must
satisfy the homogeneity assumption. Quite often, the training data is not target-free nor is it
homogeneous with the test data, which leads to a degradation in the detection performance.
In order to alleviate the high target density or heterogeneity problem and therefore improve
the detection performance, research had been carried out in knowledge-based (KB-STAP) tech-
niques, [9], [10] and [11], which incorporate apriori knowledge into the processor.

On the other hand, in-the-gate processing or single data set detection algorithms, namely the
generalised maximum likelihood estimation detector (GMLED) and the maximum likelihood
estimation detector (MLED), have been proposed in [12] and [13] to circumvent the problem
where such training data are not available. This approach forgoes the training data requirement
and operates solely on the test data.

Our work in this area is directed towards what might be called “small STAP”, where the
number of spatial channels is small and the array is non-uniform and by a desire to minimize
the amount of navigation data associated with both the transmitter and receiver. Further, it
is directed towards environments where all range gates contain targets. This paper presents
the two techniques that we have recently developed to address the problems within a bistatic
airborne radar framework. These techniques will be compared and contrasted with existing ones
in terms of both performance and complexity.

In what follows, bold lower case and upper case letters are used to denote column vectors and
matrices respectively. The superscripts ()∗, ()T and ()H denote the complex conjugate, transpose
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and Hermitian operations respectively.

2 Problem Statement

Consider a radar system utilizing an Ns-element array with inter-element spacing d. The radar
transmits an Mt-pulse waveform in its coherent processing interval (CPI). The received data
can then be partitioned in both space and time, by using a sliding window, into an (N × M)
space-time snapshot X′. This partitioning will result in KT = (Ns−N +1)(Mt−M +1) snapshot
matrices being generated for processing.

The columns of these space-time snapshots are then stacked into inter-leaved column vectors xk

of size (NM ×1). The KT columns are then arranged as the columns of the (NM ×KT ) matrix
X. The signal model used is then given as:

X = αstT + N (1)

where both s and t are space-time vectors and α is a complex amplitude.

N is the (NM ×KT ) zero-mean Gaussian clutter-plus-noise (interference) matrix with indepen-
dent and identically distributed (iid) columns nk ∼ CN (0,C). The space-time clutter-plus-noise
covariance matrix is defined as C, where C = E[NNH ] and E[∗] is the expectation operator.
Generally, the detection problem is treated as a hypothesis test with the null and alternative
hypotheses:

H0 : X = N (2)

H1 : X = αstT + N (3)

The optimum processor (Wiener filter) weights, of the Neyman-Pearson’s [14] likelihood ratio
test, are given as wopt = βC−1s in [15]. For a single data snapshot x, which can be any one
columns of X, the resulting filter output y is:

y = wHx = β∗sHC−1x (4)

and β is a complex arbitrary constant. The optimum processor can be viewed as a whitening
filter stage followed by a matched filter stage [1]. The filter output power, Y = |y|2, is then
compared to a threshold γ, for a certain probability of false alarm Pfa. The detection test
becomes

Y

H1

≷

H0

γ (5)
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For any signal detection algorithm, a highly desirable property is the constant false alarm rate
(CFAR) property. By selecting a suitable value of β, the optimum processor can be made
to possess the CFAR property. The CFAR matched filter (MF) is obtained by setting β =
(
sHC−1s

)− 1

2 in the hypothesis test of equation (5).

Traditional detection algorithms, such as the generalised likelihood ratio test (GLRT) [16] or the
adaptive matched filter (AMF) [17], require target-free training data that must be homogeneous
with the test data. To implement the detection test, an estimate of the interference covariance
matrix, Ĉ = 1

Kt

∑Kt

k=0 zkz
H
k , is obtained from the secondary data zk of size Kt. This gives the

sample matrix inversion (SMI) algorithm [15].

These Kt snapshots are usually obtained from other range cells [18], thus making the algo-
rithms vulnerable to heterogeneity problems and resulting in a degradation in detection per-
formance [19]. Two alternative approaches, the generalised maximum likelihood estimation
detector (GMLED) and maximum likelihood estimation detector (MLED) were proposed in [13]
to circumvent the problem where such training data are not available. They only require the
set of test data and thus can be called the single data set detection (SDSD) algorithms.

Besides the detection test, the efficiency of any linear processors can also be characterised by
the improvement factor (IF ) [1], which is defined as the ratio of signal-to-noise power ratios at
the output and input.

IF =
wHssHw · tr(C)

wHCw · sHs
(6)

where tr(C) is the trace of C; s = st ⊗ ss and ⊗ is the Kronecker product. The temporal and
spatial dimensions of the target steering vector are respectively:

st =
[
1 ej2πfD . . . ej2π(M−1)fD

]T
(7)

ss =
[
1 ej2πfs . . . ej2π(N−1)fs

]T
. (8)

For a bistatic forward-looking radar configuration, as shown in Fig. 1, the normalized target
Doppler and spatial frequencies are respectively:

fD =
vrad,rx + vrad,tx

λPRF
(9)

fs =
d sin ϕr cos θr

λ
. (10)

vrad,rx and vrad,tx are the relative velocities of the target to the receiver and transmitter respec-
tively, λ is the wavelength of the radar signal, PRF refers to the pulse repetition frequency of
the radar system, ϕr and θr are the azimuth and elevation angle of the receiver to the target on
the ground respectively.
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Figure 1: Geometry of an airborne bistatic radar.

Following (6), another performance metric that will be used to evaluate the performance of the
processors in this paper is:

IFloss =
IFopt

IFSTAP

=
sHC−1ssHĈ−1CĈ−1s

sHĈ−1ssHĈ−1s
(11)

where IFSTAP is the IF of the STAP processor being looked at. The maximum attainable
value of IFloss is unity, indicating that the processor performance is not degraded by clutter.
Optimum performance is obtained with w = wopt. In practice, the processor performance is
degraded by estimation losses and the bistatic clutter range-dependency problem.

3 Prediction of Inverse Covariance Matrix (PICM) Sequences

Linear prediction is widely used in coding and communications applications. In [8], a new tech-
nique was proposed to use linear prediction theory to obtain an estimate of the range-dependent
inverse clutter covariance matrix. It must be noted that the linear prediction techniques are
applied to the inverse covariance matrix sequence, as shown in Fig. 2, and not the uncorrelated
data snapshots.

The test range gate is hereby referred to as the rth range gate. Denote each lag λ of the stacked
inverse covariance matrix of the kth training range gate as C̄−1

k (λ), the two-taps linear prediction,
shown in Fig. 3, is given as:

̂̄C
−1

k (λ) = α+1(λ)C̄−1
k+1(λ) + α−1(λ)C̄−1

k−1(λ) (12)
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Figure 2: Inverse covariance matrix sequence

for k = r −
K

2
− 1, . . . , r − 2, r + 2, . . . , r +

K

2
+ 1

λ = 1, 2, . . . , (NM)2

where ̂̄C
−1

k , C̄−1
k+1 and C̄−1

k−1 are the estimated stacked inverse covariance matrix for the kth

range gate and the stacked inverse covariance matrices for the (k +1)th and (k− 1)th range gate
respectively; α+1 and α−1 are the prediction weights and K is the total number of training range
gates required. The (r − 1)th and (r + 1)th range gates (guard-gates) are normally excluded to
prevent any target signal attenuation.

The inverse covariance matrices and prediction weights are a function of λ. The solution of
α+1(λ) and α−1(λ) are given by the minimisation of the minimum mean squared error (MMSE)
of the true and estimated stacked inverse covariance matrix

∑

k

∣∣∣∣C̄
−1
k (λ) − ̂̄C

−1

k (λ)

∣∣∣∣
2

(13)
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Figure 3: Two-taps linear prediction

The series of resulting linear simultaneous equations from equation (12) can be re-arranged into
a matrix form and a solution can be obtained by solving the system of linear simultaneous
equations. From equation (12):

Ĉ−1
k (λ) = Θ Ω (14)

where

Θ =
[
C̄−1

k+1(λ) C̄−1
k−1(λ)

]
(15)

Ω = [α+1(λ) α−1(λ)]T (16)

The linear prediction is done on each λ for the inverse covariance matrix. The prediction weights
Ω̂ for each λ of the inverse covariance matrix is obtained from the surrounding training data
(regressors). From equation (14),

ΘHĈ−1
k (λ) = ΘHΘ Ω (17)

(
ΘHΘ

)−1
ΘHĈ−1

k (λ) = Ω̂ (18)

There are more equations than unknowns required, thus equation (13) is simply a standard
least squares (LS) problem with a known solution. Technically, this is smoothing [20] rather
than forward or backward prediction. Simple forward or backward prediction will not give as
accurate an estimate as smoothing does. It should also be noted here that a LS fit allows for
the smoothing out of noise in inverse covariance matrices estimates.
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In practice, the exact covariance matrix C is unknown and needs to be estimated from the data.
For each kth range gate, a reasonable estimate of the covariance matrix C−1

k is obtained by
using 2NM snapshots [21]. For conventional STAP algorithms, the computational complexity
of computing the STAP weights is given as O(NM)3 for inverting the estimated covariance
matrix Ĉ.

For PICM, there is the additional computational complexity of O(NM)3 for computing the
inverse covariance matrix of each range gate. This procedure is repeated for all the range gates
in the training sequence. The computational complexity of the two-taps linear prediction, of
order O(4)3 involves the inversion of a (2 × 2) matrix and the prediction weights are computed
for each of the (NM)2 components of C̄−1

k (λ). Thus the total computational complexity of the
PICM technique is

(
K × O(NM)3 + (NM)2 × O(4)3

)
.

By exploiting the Hermitian property of the inverse covariance matrix, the linear prediction only
needs to be carried out for the upper triangular portion. The linear prediction weights for the
lower triangular portion of the inverse covariance matrix are simply the complex conjugate of
its upper triangular portion’s counterparts.

By implementing PICM, there is no need to exploit the Toeplitz-block-Toeplitz structure of
the theoretical covariance matrix, thus eliminating the requirement for a uniform linear array
(ULA), as required in [22] and [6]. Without any such restrictions, PICM can be applied to arrays
of arbitrary configuration.

3.1 Longer and multi-dimensional linear prediction

Longer prediction can be done by using more training range gates to obtain a better estimate
of the inverse covariance matrix. The four-taps linear prediction is then simply:

̂̄C
−1

k (λ) = α+2(λ)C̄−1
k+2(λ) + α+1(λ)C̄−1

k+1(λ)

+α−1(λ)C̄−1
k−1(λ) + α−2(λ)C̄−1

k−2(λ) (19)

In this case, 12 training range gates are required to obtain 8 equations [21] to make a reasonable
estimate of 4 parameters, α+2, α+1, α−1 and α−2. The extension to even longer predictors is
straight-forward.

For multi-dimensional linear prediction, more prediction coefficients are obtained from within
the same range gate. From (12), the two-taps, two-dimensional linear prediction is:

̂̄C
−1

k (λ) = α+1(λ)C̄−1
k+1(λ) + α−1(λ)C̄−1

k−1(λ)

+β+1(λ + 1)C̄−1
k+1(λ + 1) + β−1(λ + 1)C̄−1

k−1(λ + 1)

+γ+1(λ − 1)C̄−1
k+1(λ − 1) + γ−1(λ − 1)C̄−1

k−1(λ − 1) (20)
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Increasing the number of prediction weights results in a corresponding increase in the number
of training range gates required. However, there is a trade-off between more accurate estimates
and computational complexity. Up to a certain limit, the benefits of using more prediction
coefficients will be negated by the bistatic clutter range dependency problem.

3.2 Mitigation against aliasing

A pulse Doppler radar can be ambiguous in either range or Doppler frequency [1]. For conven-
tional pulse Doppler radar, range ambiguities occur because of the transmission of repetitive
pulses. The additional ambiguous clutter returns are also known as multiple-time-around clut-
ter. Such clutter echoes may result in additional clutter notches, thus affecting the detection of
targets.

Doppler ambiguites occur when the Nyquist sampling criterion is not followed. From (9), we
can see that the Doppler frequency is associated with the relative velocities of the target to the
receiver and transmitter. These velocities are functions of the azimuth and elevation angles of
the receiver and transmitter to the target. Thus any ambiguity in azimuth causes ambiguity in
Doppler frequency and vice versa.

PICM is able to deal with the additional clutter notches resulting from range and Doppler
ambiguities. In such situations, conventional compensation techniques such as angle-Doppler
compensation (ADC) may not perform as well.

3.3 Performing detection in other range gates

From (12), it can be seen that the two-taps linear prediction is carried out for the whole sequence
of training range gates used. Thus the prediction weights are obtained for the whole training
sequence, except for the first and last range gate. As a result, the prediction weights can
also be used to perform detection in other range gates. This does not lead to any additional
computational costs in having to re-compute the prediction weights all over again.

4 Single Data-Set Detectors (SDSD)/ In-the-Gate Processing

Conventional STAP algorithms require the training data to be target-free and statistically ho-
mogeneous with respect to the range gate under test. However, these conditions are often not
satisfied, which leads to a degradation in the detection performance. In order to alleviate the
high target density or heterogeneity problem and therefore improve the detection performance,
research had been carried out in knowledge-based (KB-STAP) techniques, [9], [10] and [11],
which incorporate apriori knowledge into the processor.
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An alternative approach that forgoes the training data requirement and operates solely on
the test data set was proposed in [12]. The new SDSD, namely the generalised maximum
likelihood detector (GMLED) and the maximum likelihood detector (MLED) are high-resolution
CFAR spectral estimators, thus enabling them to be used for detection. They carry out a joint
maximum likelihood estimate of the signal and interference subspaces.

The basic concept behind this single data set detection or in-the-gate processing is illustrated in
Fig. 4 for the single channel case. In estimating the spectral content of a signal at a particular
frequency fo, it is common practice to construct some form of band-pass filter Ho(f) centered at
that frequency and measure the power in the signal y at the output of the filter. The frequency
response of the filter might be fixed as in the fast Fourier transform (FFT) or adaptive as in the
case of minimum variance spectral estimation. In common with maximum likelihood spectral
estimation (APES) [23], SDSD adds a second path (lower branch in Fig. 4(a)), which consists
of a unit-amplitude complex oscillator at the frequency of interest fo and a complex gain term
a.

z

(b)(a)

time

amplitude

e
y

e

z
a

oscillator

at f gain

complex

0

y
0

H (f)

filter

error

−

x

signal

Figure 4: Single data set detecion: (a) block diagram; (b) signals.

The filter frequency response Ho(f) and the complex gain a are chosen to minimize the average
power in the error signal e, subject to a linear constraint that the gain of the filter at fo is unity,
that is, |Ho(fo)| = 1. With this choice, an estimate of the signal or target power is given by |a|2

and the clutter or coloured noise power at the output of the filter is given by the average power
of the error e. The ratio of the two power estimates provides a CFAR test statistic and hence
there is no requirement for secondary data.

For a full-dimension STAP system, the computational cost of directly inverting a (NM ×NM)
dimensional matrix, which is of order O(NM)3, is high. Reducing the dimension of the STAP
processor is often used to reduce the computational costs of the processor. Reduced dimension
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(RD) STAP techniques require less training data and hence minimise the widening of the clutter
ridge. One of them is the joint domain localized (JDL) processor proposed by Wang and
Cai in [24]. It works by transforming the space-time data into the angle-Doppler domain by
using a two-dimensional discrete Fourier Transformation (DFT). The angle-Doppler data is
then grouped into regions called localized processing regions (LPRs) and adaptive processing is
restricted to the (Na × Md) LPRs as shown in Fig. 5.

Doppler Bins

A
n

gl
e 

B
in

s

Localized Processing Region

Figure 5: LPR of JDL processor.

The detection statistics of the reduced-dimension SDSD are:

YJDL−GMLED =
|̃sHQ̃−1g̃|2

s̃HQ̃−1s̃
(
1 + g̃HQ̃−1g̃

)
H1

≷

H0

γ (21)

YJDL−MLED =
|̃sHQ̃−1g̃|2

s̃HQ̃−1s̃

H1

≷

H0

γ (22)

g̃ =
1

|t|
X̃t∗

=
1

|t|

KT∑

k=1

x̃kt
∗(k)

=

[
g̃′A
g̃′

B

]
(23)
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Q̃ =

(
X̃ −

1

|t|
g̃tT

)(
X̃ −

1

|t|
g̃tT

)H

=

KT∑

k=1

x̃kx̃
H
k − g̃g̃H

=

[
q̃AA q̃H

BA

q̃BA Q̃BB

]
(24)

where g̃ is the angle-Doppler ‘sample mean’ vector, obtained by coherently combining the KT

test data snapshots along the space-time vector s. The centered covariance matrix Q̃ is the

product of the original test data snapshot matrix with the sample mean subtracted
(
X̃ − 1

|t| g̃tT
)

and the Hermitian counterpart of this quantity. Hence g̃ ∼ CN (αs̃, C̃) and Q̃ has a complex
Wishart distribution with scale matrix C̃, that is, Q̃ ∼ CWNaMd

(C̃, KT − 1). The @̃ refers to
the quantities transformed into the angle-Doppler domain.

The conventional STAP approaches can be referred to as two-data-sets detection (TDSD), since
they require one training data set to estimate the interference covariance matrix and a separate
test data set. Two such detection statistics are the generalised likelihood ratio test (GLRT) [16]
and the adaptive matched filter (AMF) [17]. Consequently the reduced-dimension counterparts
(RD-TDSD) of these detection statistics are the JDL-GLRT [24] and the JDL-AMF.

YJDL−GLRT =
|̃sH ˜̂C

−1

g̃|2

s̃H ˜̂C
−1

s̃

(
1 + 1

Kt
g̃H ˜̂C

−1

g̃

)
H1

≷

H0

γ (25)

YJDL−AMF =
|̃sH ˜̂C

−1

g̃|2

s̃H ˜̂C
−1

s̃

H1

≷

H0

γ (26)

From equations (21) and (25), it can be seen that the JDL-GMLED has a similar detection
statistic as the JDL-GLRT except that Q̃−1 (from the test data set) is used for the former and
˜̂
C

−1

(from the training data set) is used for the latter. It can also be shown that they have
the same probabilities of false alarm and detection, with one less complex degree of freedom
(DoF) for the JDL-GMLED. This loss of one complex DoF, which is used in the estimation of
the signal subspace of dimension one, is a result of the dual estimation of the signal and noise
subspaces from the same data set.

4.1 Results Summary

To complete the discussion, the probability of false alarm Pfa and probability of detection Pd

expressions for the various detection tests presented in the paper are summarised. For the
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purpose of analysis. it is assumed that there exists a set of independent training data {zk}
Kt

k=1,
that is homogeneous with the test data. In addition, it is also assumed that although the test
data snapshots are obtained using a sliding window, the columns of X from equation (1) are
statistically independent. The effects of using non-independent snapshots will be presented in
the simulation results section and it must be stressed that the effects will be similar for both the
SDSD and TDSD algorithms.

Table 1: Summary of the Pfa and Pd expressions

Algorithm Pfa Pd L τ

JDL-AMF eq (27) eq (29) Kt − NaMd + 1 1
Kt

η̃γ

JDL-GLRT eq (27) eq (29) Kt − NaMd + 1 γ
Kt−γ

JDL-MLED eq (27) eq (29) KT − NaMd η̃γ

JDL-GMLED eq (27) eq (29) KT − NaMd
γ

1−γ

The results summary, in Table 1, are presented in a consistent form as in [12] to provide easier
comparison. The four reduced-dimension detectors share the same expressions for the Pfa and
Pd with each detector having its specific value of the degrees of freedom L, the non-centrality
parameter λ̃ and the effective threshold τ (where τ is expressed in terms of the test threshold γ

from equation (5)).

The Pfa of the reduced-dimension detection tests is

Pfa(γ) =

∫ 1

0
(1 + τ)−L fβ,L+1,NaMd−1(η̃)dη̃ (27)

where fβ,L+1,NaMd−1(η̃) is the type I beta distribution and

η̃ =
(
1 + g̃

′H
B Q̃

′−1
BBg̃′

B

)−1
. (28)

Finally, the general expression of the Pd is

Pd =

∫ 1

0
h(η̃)fβ,L+1,NaMd−1(η̃)dη̃ (29)

where

h(η̃) = 1 − (1 + τ)−L
L∑

l=1

(
L

l

)
τ lGl

(
λ̃

1 + τ

)
(30)

and

Gl(i) = e−i
l−1∑

n=0

in

n!
(31)
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with λ̃ = KT NaMdρ̃ and ρ̃ = 1
NaMdKT

|αst|
2
s̃HC̃−1s̃.

5 Simulation Results

5.1 IFloss performance

This section will show the simulation results, with respect to the IFloss performance, of the
PICM algorithm against conventional STAP algorithms. The radar parameters used are shown
in Table 2 and the backlobe of the clutter scatterers’ response was ignored.

Table 2: Radar Parameters

number of antenna elements N 8
number of pulses delay M 24
pulse repetition frequency PRF 20 kHz
operating frequency fo 10 GHz
array geometry bistatic forward-looking

receiver & transmitter height HR, HT 1000 m
receiver & transmitter velocity vR, vT 90 m/s
transmitter flight angle δt 90◦

receiver look angle ϕr 45◦

receiver maximum sensor pattern direction ϕ0 45◦

baseline separation (along flight direction) 2000 m
clutter-to-noise ratio (CNR) 30dB

For all the algorithms shown in this sub-section, 2NM snapshots were used to obtain the co-
variance matrix Ck for each kth range gate and a total of 16 training range gates were used to
compute the STAP filter weights. The simulation results were obtained from a Monte Carlo
simulation comprising of 1000 runs.

Fig. 6 shows the IFloss plot of the PICM technique with two-taps linear prediction (dashed
line) and the PICM technique with four-taps linear prediction (solid line). The dash-dotted line
shows the conventional processor obtained from the straight averaging (SA) of the covariance
matrices Ck, which is also known as the sample matrix inversion (SMI) algorithm [15]. Lastly,
the dash-dotted line with crosses shows the coventional processor obtained from the SA of the
inverse covariance matrices C−1

k . The last processor was included as a reference since the linear
prediction is done on the inverse covariance matrices.

It can be observed that both PICM techniques give an improvement in IFloss performance over
the latter two conventional processors. An important point to note is the narrower clutter notch
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Figure 6: IFloss plot: PICM (2-taps), PICM (4-taps), SMI and SMI-(INV C)

provided by both PICM techniques, hence enhancing the capability of detecting slow moving
targets. By comparing the PICM with two-taps linear prediction against PICM with four-taps
linear prediction, we see that the latter performs better within the clutter notch. At the critical
clutter notch frequency, there is an improvement of 2.5dB.

For the rest of the simulation results, we will show PICM with two-taps linear prediction against
other STAP algorithms. In Figs. 7 and 8, we show the IFloss performance with range and
Doppler ambiguities respectively. For the set of results with Doppler ambiguities, we change the
receiver’s look angle ϕr = ϕ0 = 0◦ and include both the frontlobe and backlobe of the clutter
scatterers’ response to illustrate the robustness of the proposed technique. The dashed line now
refers to the angle-Doppler compensation (ADC) algorithm [3]. From both figures, we can see
that PICM outperforms the two reference algorithms and the results highlight the benefits of
using PICM in the presence of aliasing effects.

The results differ for the range and Doppler ambiguities because the effects on the clutter
spectrum due to each ambiguity are different. When range ambiguity is present, the clutter
echoes of a certain range gate includes the clutter contributions from other range gates. Thus
the different mainlobe in ambiguous range gates move in different directions and do not coincide,
even with compensation to mitigate for the bistatic clutter Doppler range dependency. Whereas
for Doppler ambiguity, the clutter notch is repeated every PRF. In this case, the different
mainlobes move in the same direction (constant shift).
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Figure 7: IFloss plot with range ambiguities: PICM, SMI and ADC
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Figure 8: IFloss plot with Doppler ambiguities: PICM, SMI and ADC
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Specifically, we note that PICM gives a significant improvement over ADC within the clutter
notches. The latter compensation method was meant to compensate with the peak angle and
Doppler frequencies and thus it will perform well within the mainlobe. However, aliasing results
in additional clutter notches due to the overlapping of clutter spectrums and thus the coventional
compensation methods will not perform as well when aliasing occurs.
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Figure 9: IFloss plot of a secondary range gate

Fig. 9 shows the IFloss plot of one of the secondary training range gate used in the linear
prediction sequence. The superior performance of PICM over the other two conventional STAP
algorithms in the secondary range gate shows the usefulness of the technique in performing
clutter suppression. No additional computational costs are encountered since the prediction
weights for all the range gates in the training sequence have already been determined. However,
this is not the case for the other reference algorithms. Whenever the range gate under test is
changed, the whole process of getting the estimated covariance matrix, used to obtain the filter
weights, from neighbouring range gates, has to be repeated. Any compensation done to mitigate
for the bistatic clutter Doppler range dependency also has to be re-computed, since the reference
test range gate has been changed.

5.2 Receiver operating curves

Another performance metric is to compute the receiver operating curves (ROCs) of the STAP
processors to evaluate the performance of the various training algorithms. The ROCs show the

Bistatic STAP Training Without Navigation Data 

RTO-MP-SET-095 29 - 17 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 



probability of target detection as a function of the signal-to-clutter plus noise ratio (SCNR).

The JDL-GMLED, JDL-MLED, along with the JDL-GLRT and JDL-AMF were simulated.
The radar parameters used in this section are shown in Table 2 and the following figures show
the theoretical (labelled TH) and simulated Pd curves vs SCNR for Pfa = 10−2. The results
presented in this section were obtained from Monte Carlo simulations comprising of 10000 runs
each. The target signal was injected at a frequency of 3333Hz.

In order to make a fair comparison, the number of test data snapshots KT was taken to be the
same for all the detection algorithms, since it is a parameter that affects the test data which is
required for all the algorithms. Different simulation results are shown to illustrate the effects
of assuming independent and identically distributed (iid) data snapshots. For the RD-TDSD
approaches (JDL-AMF and JDL-GLRT), the number of training data snapshots Kt was set to
be the same as KT used for the RD-SDSD approaches.

Two sets of results are shown; the first one uses KT = 2NM test data snapshots and Kt = 2NM

training data snapshots while the second set of results uses KT = 2NaMd and Kt = 2NaMd.
For the first set, the results are shown in Figs. 10-13 respectively, when iid and non-iid data
snapshots are used. Similarly, for the second set, the results are shown in Figs 14-17 respectively.

For all the figures, the dashed lines with diamonds, asterisks, squares and pluses refer to the
theoretical results for the JDL-MLED, JDL-GMLED, JDL-AMF and JDL-GLRT respectively.
These theoretical results were obtained using equations (27) and (29), with the parameters
shown in Table 1. The same theoretical results were used in both the iid and non-iid data
snapshots scenarios. The simulation results for the reduced-dimension algorithms are shown by
the solid lines with the same markers. In addition, the solid lines with right and left-pointing
triangles refer to the JDL-AMF and JDL-GLRT for the filter-banks based JDL processor with
angle and separate doppler compensation (FB-JDL-ASDC) [4]; the solid line with crosses and
circles refer to the JDL-AMF and JDL-GLRT for angle-Doppler compensation (ADC) [3]. For
the ADC technique, the angle-Doppler compensation was performed in the space-time domain
followed by a JDL processor to obtain the STAP filter weights.

When iid data snapshots are assumed, as in Figs. 10-11 and 14-15, the bunch of lines on the
left-most side includes the theoretical plots and the simulation results for the JDL-MLED and
JDL-GMLED. The fact that the RD-SDSD approaches (JDL-GMLED and JDL-MLED) need
to estimate both the signal and noise subspace from the same set of data results in a loss of 1
complex DoF in the noise subspace estimate. As KT and Kt increase, the loss in the DoF becomes
less significant and the various JDL-STAP Pd curves converge due to the beta-distribution,

Moreover, for large values of KT and Kt, the additional terms in the denominator of equations
(21) and (25) will tend to unity, thus making them similar to equations (22) and (26) respectively.
As a result, we see that, in Figs 10 and 11, the Pd curves for the generalised and non-generalised
detectors, between the JDL-MLED and JDL-GMLED or the JDL-AMF and JDL-GLRT are
almost identical.
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Figure 10: Probability of detection vs SCNR of generalised detectors for KT = Kt = 2NM ,
assuming iid data snapshots.
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Figure 11: Probability of detection vs SCNR of non-generalised detectors for KT = Kt = 2NM ,
assuming iid data snapshots.
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Figure 12: Probability of detection vs SCNR of generalised detectors for KT = Kt = 2NM .
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Figure 13: Probability of detection vs SCNR of non-generalised detectors for KT = Kt = 2NM .
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For the case when KT = Kt = 2NaMd, as in Figs. 14 and 15, it can be observed that when
the values of KT and Kt are decreased, the theoretical results can be distinguised, due to the
additional terms for the JDL-GMLED and JDL-GLRT expressions. For all the figures, the
order of the theoretical results for the algorithms, from left to right, is as follows: JDL-GLRT,
JDL-GMLED, JDL-AMF and JDL-MLED. This observation follows closely to that in [13].

When the iid assumption of the data snapshots is not met, it can be observed that there is a
general degradation in performance results for all the detectors. This can be seen by comparing
Figs. 10-11 with Figs. 12-13 or Figs. 14-15 with Figs. 16-17. However, the SDSD algorithms
(JDL-GMLED and JDL-MLED) still perform better than the TDSD algorithms (JDL-GLRT
and JDL-AMF). It should be emphasised that the degradation is associated with both the SDSD
and TDSD algorithms.

The first and second set of figures are shown to illustrate the effects of KT and Kt on the
detection performance although the second set of results is more applicable for JDL-STAP since
it uses KT = 2NaMd and Kt = 2NaMd [21]. Increasing Kt affects only the JDL-AMF and JDL-
GLRT since this translates into an improvement in the estimation of the noise covariance matrix
and hence the noise subspace. Increasing KT on the other hand, results in an improvement in
the signal subspace estimation, that is, improved SCNR. This is exhibited in the change in the
non-centrality parameter of all algorithms.

Therefore, KT also affects the noise subspace estimation and consequently the algorithms’ per-
formances through τ and L. Hence, there is an improvement in detection performance between
Figs. 10-11 and 14-15 or between Figs. 12-13 and 16-17, at the expense of higher computational
complexity.

When iid data snapshots are used, for the JDL-GMLED and JDL-MLED, it can be seen that the
theoretical and simulation results agree well for the two different sets of parameters, even for a
complicated bistatic clutter model. However, this is not the case for the RD-TDSD algorithms as
we note the severe deterioration in Pd performance for the JDL-GLRT and JDL-AMF from their
theoretical results. This shows the degradation of conventional clutter suppression algorithms
for bistatic radar applications, an observation that has been widely reported in the literature.

Although there is an improvement in detection performance when compensation is performed
to mitigate for the bistatic clutter Doppler range dependency problem, the performance is still
worse off than the in-the-gate detectors. This again highlights the benefits of using the SDSD al-
gorithms over conventional STAP algorithms in heterogeneous clutter environments. It can also
be observed that the gain in Pd performance, between the SDSD algorithms and the compensa-
tion algorithms, is greater for the second set of simulation results. This provides an additional
benefit of implementing the SDSD algorithms in heterogeneous environments since there are less
iid data snapshots for training purposes.

In summary, for the bistatic ground moving target indication scenario considered, the SDSD
algorithms give the best performance whereas the conventional STAP approaches suffer a degra-
dation due to the bistatic clutter range dependency problem.
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Figure 14: Probability of detection vs SCNR of generalised detectors for KT = Kt = 2NaMd,
assuming iid data snapshots.
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Figure 15: Probability of detection vs SCNR of non-generalised detectors for KT = Kt =
2NaMd, assuming iid data snapshots.
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Figure 16: Probability of detection vs SCNR of generalised detectors for KT = Kt = 2NaMd.
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Figure 17: Probability of detection vs SCNR of non-generalised detectors for KT = Kt =
2NaMd.
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6 Conclusion

In this paper, we provided the analysis of using linear prediction theory to obtain an estimate of
the inverse covariance function. Simulation results show the improvement in performance over
conventional STAP techniques and using longer prediction results in an improved performance.
The technique is able to mitigate against aliasing and also provide clutter suppression in the
secondary range gates without additional computational costs. We have also discussed a novel
in-the-gate processing approach, which forgoes the training data and operates solely on the test
data. This single data set detection applies particularly to heterogeneous environments where
the training data are often not target-free or homogenous with the test data. Simulation results
for a bistatic radar application show the improvement in detection performance of this approach
over conventional STAP approaches.
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